Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.

Identifieur interne : 002669 ( Main/Exploration ); précédent : 002668; suivant : 002670

Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.

Auteurs : Yanjun Zan [République populaire de Chine] ; Yan Ji ; Yu Zhang ; Shaohui Yang ; Yingjin Song ; Jiehua Wang

Source :

RBID : pubmed:23663326

Descripteurs français

English descriptors

Abstract

BACKGROUND

Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species.

RESULTS

In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments.

CONCLUSIONS

This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.


DOI: 10.1186/1471-2164-14-318
PubMed: 23663326
PubMed Central: PMC3682895


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.</title>
<author>
<name sortKey="Zan, Yanjun" sort="Zan, Yanjun" uniqKey="Zan Y" first="Yanjun" last="Zan">Yanjun Zan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072</wicri:regionArea>
<wicri:noRegion>300072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Yan" sort="Ji, Yan" uniqKey="Ji Y" first="Yan" last="Ji">Yan Ji</name>
</author>
<author>
<name sortKey="Zhang, Yu" sort="Zhang, Yu" uniqKey="Zhang Y" first="Yu" last="Zhang">Yu Zhang</name>
</author>
<author>
<name sortKey="Yang, Shaohui" sort="Yang, Shaohui" uniqKey="Yang S" first="Shaohui" last="Yang">Shaohui Yang</name>
</author>
<author>
<name sortKey="Song, Yingjin" sort="Song, Yingjin" uniqKey="Song Y" first="Yingjin" last="Song">Yingjin Song</name>
</author>
<author>
<name sortKey="Wang, Jiehua" sort="Wang, Jiehua" uniqKey="Wang J" first="Jiehua" last="Wang">Jiehua Wang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23663326</idno>
<idno type="pmid">23663326</idno>
<idno type="doi">10.1186/1471-2164-14-318</idno>
<idno type="pmc">PMC3682895</idno>
<idno type="wicri:Area/Main/Corpus">002604</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002604</idno>
<idno type="wicri:Area/Main/Curation">002604</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002604</idno>
<idno type="wicri:Area/Main/Exploration">002604</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.</title>
<author>
<name sortKey="Zan, Yanjun" sort="Zan, Yanjun" uniqKey="Zan Y" first="Yanjun" last="Zan">Yanjun Zan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072</wicri:regionArea>
<wicri:noRegion>300072</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Yan" sort="Ji, Yan" uniqKey="Ji Y" first="Yan" last="Ji">Yan Ji</name>
</author>
<author>
<name sortKey="Zhang, Yu" sort="Zhang, Yu" uniqKey="Zhang Y" first="Yu" last="Zhang">Yu Zhang</name>
</author>
<author>
<name sortKey="Yang, Shaohui" sort="Yang, Shaohui" uniqKey="Yang S" first="Shaohui" last="Yang">Shaohui Yang</name>
</author>
<author>
<name sortKey="Song, Yingjin" sort="Song, Yingjin" uniqKey="Song Y" first="Yingjin" last="Song">Yingjin Song</name>
</author>
<author>
<name sortKey="Wang, Jiehua" sort="Wang, Jiehua" uniqKey="Wang J" first="Jiehua" last="Wang">Jiehua Wang</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Exons (genetics)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Introns (genetics)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Nucleotide Motifs (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Receptor Protein-Tyrosine Kinases (chemistry)</term>
<term>Receptor Protein-Tyrosine Kinases (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Exons (génétique)</term>
<term>Introns (génétique)</term>
<term>Motifs nucléotidiques (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protein-Serine-Threonine Kinases (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Récepteurs à activité tyrosine kinase (composition chimique)</term>
<term>Récepteurs à activité tyrosine kinase (génétique)</term>
<term>Séquence conservée (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
<term>Receptor Protein-Tyrosine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Récepteurs à activité tyrosine kinase</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Exons</term>
<term>Introns</term>
<term>Nucleotide Motifs</term>
<term>Plant Proteins</term>
<term>Populus</term>
<term>Receptor Protein-Tyrosine Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Exons</term>
<term>Introns</term>
<term>Motifs nucléotidiques</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Récepteurs à activité tyrosine kinase</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Conserved Sequence</term>
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Protein-Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Données de séquences moléculaires</term>
<term>Duplication de gène</term>
<term>Phylogenèse</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Séquence conservée</term>
<term>Séquence d'acides aminés</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23663326</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2013</Year>
<Month>May</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.</ArticleTitle>
<Pagination>
<MedlinePgn>318</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-14-318</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Leucine-rich repeat receptor-like kinases (LRR-RLKs) comprise the largest group within the receptor-like kinase (RLK) superfamily in plants. This gene family plays critical and diverse roles in plant growth, development and stress response. Although the LRR-RLK families in Arabidopsis and rice have been previously analyzed, no comprehensive studies have been performed on this gene family in tree species.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this work, 379 LRR-RLK genes were retrieved from the Populus trichocarpa genome and further grouped into 14 subfamilies based on their structural and sequence similarities. Approximately 82% (312 out of 379) of the PtLRR-RLK genes are located in segmental duplication blocks indicating the role of duplication process in the expansion of this gene family. The conservation and variation in motif composition and intron/exon arrangement among PtLRR-RLK subfamilies were analyzed to provide additional support for their phylogenetic relationship and more importantly to indicate the potential divergence in their functions. Expression profiling of PtLRR-RLKs showed that they were differentially expressed in different organs and tissues and some PtLRR-RLKs were specifically expressed in meristem tissues, which indicated their potential involvement in tissue development and differentiation. For most AtLRR-RLKs with defined functions, Populus homologues exhibiting similar expression patterns could be identified, which might indicate the functional conservation during evolution. Among 12 types of environmental cues analyzed by the genome-wide microarray data, PtLRR-RLKs showed specific responses to shoot organogenesis, wounding, low ammonium feeding, hypoxia and seasonal dormancy, but not to drought, re-watering after drought, flooding, AlCl3 treatment and bacteria or fungi treatments.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This study provides the first comprehensive genomic analysis of the Populus LRR-RLK gene family. Segmental duplication contributes significantly to the expansion of this gene family. Populus and Arabidopsis LRR-RLK homologues not only share similar genetic structures but also exhibit comparable expression patterns which point to the possible functional conservation of these LRR-RLKs in two model systems. Transcriptome profiling provides the first insight into the functional divergence among PtLRR-RLK gene subfamilies and suggests that they might take important roles in growth and adaptation of tree species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zan</LastName>
<ForeName>Yanjun</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Yu</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Shaohui</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Yingjin</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Jiehua</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.10.1</RegistryNumber>
<NameOfSubstance UI="D020794">Receptor Protein-Tyrosine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C580847">leucine-rich repeat receptor-like protein kinase, Populus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005091" MajorTopicYN="N">Exons</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="N">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="Y">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059372" MajorTopicYN="N">Nucleotide Motifs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020794" MajorTopicYN="N">Receptor Protein-Tyrosine Kinases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23663326</ArticleId>
<ArticleId IdType="pii">1471-2164-14-318</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-14-318</ArticleId>
<ArticleId IdType="pmc">PMC3682895</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Development. 2004 Jan;131(2):251-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14701679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011;11:367</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22185365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 May;16(5):1220-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15105442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2004 Jun 18;339(5):1025-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15178245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1679-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1990 Jun 21;345(6277):743-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2163028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1994 Oct;19(10):415-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7817399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1994;10:251-337</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1995 May;9(8):576-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7768349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1996 Apr;8(4):735-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8624444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1998 Dec 11;95(6):805-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9865698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 1999;112:531-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10027275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Jan 13;433(7022):167-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(1):51-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 May 19;125(4):749-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Jan;2(1):e2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16424920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W369-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W429-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2008 May;21(5):507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18393610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Oct;180(2):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2009 Feb;11(2):191-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19016785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Apr;14(4):214-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2009 May;281(5):483-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19184107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 May;150(1):12-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19321712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Jan 28;42(3):601-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12534271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2003 Feb;34(2):374-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12613259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2000 Jan 1;28(1):231-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10592234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2000 Mar 17;100(6):635-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10761929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2000 Jun;5(6):1003-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10911994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jul 28;289(5479):617-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10915624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):373-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2001 Jul;2(7):516-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11433358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2001 Dec 18;2001(113):re22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Aug 1;16(15):2021-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12154130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Dec;18(12):619-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):530-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3497-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2003 Jul;118(2-3):279-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12868616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Oct;6(5):507-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Nov;36(3):353-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 Aug;22(8):953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2009 Sep;230(4):737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19618208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010;11:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20064227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Feb;22(2):508-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20179141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 30;285(18):13471-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20200150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(3):e16079</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21408199</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 2011 Jun;72(5-6):498-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21626302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(6):1081-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2011 Oct;17(10):1907-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21880780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2011;8(10):785-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21959131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2011 Aug;139(8):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21879323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Jan 15;26(2):126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22241782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2004 May;21(5):828-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14963097</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ji, Yan" sort="Ji, Yan" uniqKey="Ji Y" first="Yan" last="Ji">Yan Ji</name>
<name sortKey="Song, Yingjin" sort="Song, Yingjin" uniqKey="Song Y" first="Yingjin" last="Song">Yingjin Song</name>
<name sortKey="Wang, Jiehua" sort="Wang, Jiehua" uniqKey="Wang J" first="Jiehua" last="Wang">Jiehua Wang</name>
<name sortKey="Yang, Shaohui" sort="Yang, Shaohui" uniqKey="Yang S" first="Shaohui" last="Yang">Shaohui Yang</name>
<name sortKey="Zhang, Yu" sort="Zhang, Yu" uniqKey="Zhang Y" first="Yu" last="Zhang">Yu Zhang</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zan, Yanjun" sort="Zan, Yanjun" uniqKey="Zan Y" first="Yanjun" last="Zan">Yanjun Zan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002669 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002669 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23663326
   |texte=   Genome-wide identification, characterization and expression analysis of populus leucine-rich repeat receptor-like protein kinase genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23663326" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020